用户体验基础篇·人体结构特性

Recommanded by editor
广州/学生/3年前/1108浏览
用户体验基础篇·人体结构特性Recommanded by editor

有些问题想不明白时,可以试试看些基础的东西,比如基础理论、发展史...

关于用户体验

随着技术及经济的发展,人们对计算机系统、机器等的要求,从单纯的「 可以用 」逐渐变为想要「 更好用、容易用、用得舒服 」等更加丰富的使用体验,也就是常听到的好的「 用户体验 」。

「 用户体验(User Experience )」这个概念,最早由唐纳德·诺曼(Donald Arthur Norman)提出,他希望用这个词,来涵盖个人使用系统时的体验、各个方面的体验 ,包括工业设计图形、交互界面、物理交互,以及与人的交互。

而「 用户体验 」产生的基础,是「 用户使用了机器 」,即人跟机器有发生接触、交流、互动等,然后用户会形成主观上的体会、感受。这里的「 机器 」泛指各种「 产品 」,类比诺曼所说的,即物理界面、虚拟界面、系统、硬件等。

因此,好的「 用户体验 」是基于好的交互设计。而对交互设计「 好/坏 」的影响因素,涉及到人、产品、使用环境这三者,也就是人机工程的内容。

概括一下百科对「 人机工程学 」的解释:

「 使用物的人 」「 设计的物 」以及 「 人与物共处的环境 」作为一个系统来研究(人-机-环境系统)。在人、机、环境这三个要素 本身特性 的基础上,科学地利用三个要素间的 有机联系,来寻求系统的 最佳参数


其中关于人的「 本身特性 」包括人体结构和机能特性。主要有人体各部位的尺寸、重量、面积、活动、相互关系等,眼耳鼻舌身对应的视、听、嗅、味、触觉,以及动作习惯和认知。这部分大愚认为可以把「 结构特性 」当作人的硬件,具有一定的普遍/通用性;而「 认知 」则是人的软件,个体间存在一定差异。

然后,就到了这篇文章的主要内容,人的「 结构特性 」部分。


注:下文中提及的人体结构特征是基于大部分人的情况描述,内容也是围绕人机交互有关的方面,不是人体结构特征的全面介绍。

人体结构特性

人体结构中对人机交互产生影响的主要有眼、耳、身(皮肤)对应的:视觉、听觉、触觉,以及四肢、颈椎的尺寸、受力情况和活动幅度等。下文将对这四部分的基础内容进行整理,还有聊聊一些交互、体验设计上的应用。

人与周围环境发生联系的感觉通道,最重要的就是「 视觉 」,约占80%的信息是通过视觉来获得。因此「 视觉显示 」是人机交互系统中用的最广泛的一种形式。

视觉的形成

感受光(电磁波)

人眼正常感受光谱的波长约在400nm-780nm之间(大概这个范围,网上相关资料关于这个数值存在微小差异),对应的色相是紫色-深红色,也就是常说的彩虹色。


而负责感受光的细胞是视锥细胞和视杆细胞。


视锥细胞,约占95%,复杂感受强光及有颜色(彩色)的视觉,环境光线亮时起作用,用来区分色彩。研究数据表明视锥细胞对光谱中波长为555nm的「 黄绿色 」部分最敏感


视杆细胞 ,约占5%,复杂感受弱光及没有颜色(黑白)的视觉,环境光线暗时起作用,用来区分黑白。研究数据表明视杆细胞对光谱中波长为507nm的「 青绿色 」部分最敏感,对极弱的光刺激敏感。


如果涉及一些特定的工作环境(昏暗)的应用设计时,就可以考虑下此时作用细胞的特性,进行合理的设计设置。

识别物体

正常情况下,瞳孔会根据环境中的光量来调整大小。当有光线较强时,瞳孔会收缩变窄;当光线很暗时,瞳孔会膨胀来让更多的光进入眼球。
可以把这个理解为一个保护机制,在强光下,通过收缩来减少光对眼睛的高强度刺激;而弱光下,对感光细胞刺激不足,为了不让眼睛过分费力地去寻找目标和识别目标而引起视觉疲劳,所以瞳孔会放大,让更多的光进入。

而接收光的刺激,看到物体后,是否可以准确获取信息(看清物体、识别文本、图像等)则跟视敏度相关。


视敏度 ,就是眼睛能分辨物体细微结构的能力,也就是看清物体的能力。相关实验数据表明,增强亮度可以提高视敏度。也就是说,亮度越强,人眼对物体的识别能力就越强


下面提到两个实验,其中「 正对比极性 」,指在浅色背景上显示深色字体文本,就是对应我们界面设计中的「 浅色模式 」;而「 负对比极性 」,指在深色背景上显示浅色字体文本,即「 深色/暗黑模式 」。

实验1. 德国杜塞尔多夫精神病研究所的Cosima Piepenbrock等相关人员,对「对比极性对视敏度和校对的影响」的研究结果表明:人眼在「浅色模式」下的视敏度要优于「暗黑模式」下,字体越小,浅色模式的优势就更明显。

实验2. Agelab实验室的乔纳森·多布雷斯(Jonathan Dobres)等相关人员,对「 环境光照条件(模拟白天/夜间)是否影响正对比度极性的优势」的研究表明:夜间,深色模式下阅读小字体文本比浅色模式下阅读要困难得多。 而人们对文本的识别,「浅色模式」下比在「深色模式「要快,白天比晚上更快

对上面两个实验可以用环境光的强弱对视敏度的影响来理解:为方便理解,可以假设我们的界面尺寸足够大,大到覆盖我们视野范围,那就可以将浅色模式中的浅色背景类比为白天(环境光度亮),深色模式中的深色类比为夜间(环境光度弱),而屏幕内的文本、信息,就是我们要识别的物体。亮度越强,人眼对物体的识别能力(视敏度)就越强


从上面的实验来看,无论在白天或夜间环境下,「 浅色模式 」都要比「 深色模式 」更好用

但根据德国蒂宾根大学的Andrea Aleman等相关人员的一项研究表明,长时间处于「浅色模式」下可能会导致近视。其表现为,阅读「浅色模式」下的文本时,脉络膜(跟近视有关的一层膜)会明显变薄;而阅读「深色模式」下的文本时,这层膜明显变厚。

可以理解为长时间处于「浅色模式」下,意味着视敏度的持续维持在较高状态,就像人在长时间高强度工作下可能会导致健康受损一样,眼睛同样也可能会受到损伤。因此相对长期来说,「深色模式」则是更友好的一种形式


那通过适当的设计,是否有可能找到这两者之间的最优解呢?

视觉疲劳/伤害

注视区域光照不足、光线过强、光线分布不均匀、光源闪烁、眩光、反光、目标过小、目标不稳定等,都会造成眼睛超负荷工作,导致视觉疲劳。

光照不足,对应界面交互,可以指屏幕亮度过低,也可以理解为内容和深色背景间的对比度不足。


光线过强,则是屏幕亮度过高,也可以理解为内容和浅色背景间的对比度不足。还有大面积高明度色彩的使用。而像汽车远光灯,也是常见的一种光线过强的产品,并且常常被错误使用。


闪烁会对眼睛造成很大的负荷。在高亮度下,眼睛除了视敏度会增强外,对闪烁的感知也会增强。这方面涉及的产品设计,如显示器的刷新频率,要到达某一程度,人眼才感觉不到屏幕的闪烁。


目标过小,在可识别及相同环境下,目标过小,识别所需的时间越长,也就是更费眼。像界面中的元素,文本字号、图标等,都需要有舒服的可读性。


反光,跟工业产品设计的关系比较密,反光是很容易引起视觉疲劳的和视力伤害。但生活中好像处处有反光,高楼大厦连片的镜面窗户/墙、我们正在看的电脑屏幕、手机屏幕、公交车广告牌的保护罩、汽车的后视镜等等,都会在某些瞬间让你觉得眼睛受到了亿点伤害,这也是很常见的一种光污染。

视角范围

1. 水平方向

水平方向上,双眼视野角度通常可达到120°视角。其中「 有效视域 」为30°,即人眼能立刻看清物体的存在和动作轨迹的范围。其余部分称为诱导视野,也就常说的「 余光 」。


而眼动(头部不动)「 舒适转动区 」通常为60°

如果以眼睛距离屏幕40cm为例,水平最佳视野宽度大概就是21.6cm,在72dpi下,约为600px。在进行文本宽度设定时,可以以此作为依据,来设计内容的显示宽度。

2. 垂直方向

垂直方向上,视野角度通常可达到135°视角,「 有效视域 」为30°舒适转动区 」为55°

关于「 最佳视角范围 」及「 眼动舒适区 」的应用,在汽车领域的HMI设计和一些较为复杂的交互活动中有比较多的体现。

听觉对信息传递的感知仅次于视觉,同视觉一样,利用以前的经验来解释输入

相比视觉,听觉更容易引起注意,且反应速度快,可以捕捉各个方向的信息,不受照明条件限制


人类听觉系统对声音的解释可帮助设计人机交互界面中的语音界面,而对有能力缺陷的人,如视障人士来说,「 听觉(语音交互) 」更是一种替代视觉显示的重要形式。

听觉的形成

感知范围

声音有三个要素:音调(频率)、响度(振幅)、音色(材质)。


人类可以听到的声音频率范围为20Hz-20kHz,正常情况下人耳可分辨出约 40多万种 不同的声音。


对语音的辨认频率范围为260Hz-5600Hz。正常情况下,人类语言的频率在:500Hz-3000Hz之间。


感受性、识别性最高的频率范围在1000Hz-4000Hz,低于500Hz,或高于5000Hz时,要达到一定响度才能被听到。

响度

0-20dB,几乎感觉不到
20-40dB,相当于低声说话,轻柔的响声
40-60dB,正常谈话的声音
60-70dB,会感到吵闹、长时间会损害神经细胞
超过70dB,让人感觉烦躁,无法集中注意力
85-90dB,短时间内影响人的听力,破坏神经细胞
超过90dB,听力受损


超过140dB时,引起的是痛觉,而不是听觉,会完全损害听力(欧盟界定的导致听力完全损害的最高临界点)

对音色的辨识和记忆

人耳对各种音色的分辨能力非常强,对经常听到的音色也具有很强的记忆力

比如在同一频段同时演奏不同的乐器,人耳依然可以分辨出有哪些乐器在进行演奏,也能识别出不同动物的叫声。


而对于熟悉的人,比如对父母兄弟姐妹等,经常只通过说话的声音,就能知道是谁;通过脚步声,也可以辨认出来是谁来了等等。

辨别方向

除了对声音的「 音调、响度、音色 」这三个要素的感知之外,人耳还能辨别出听到的声音是「 从哪里/哪个方向传来的 」,也就是声源方位感。

粗糙的声音

瑞士的神经科学家通过研究发现:粗糙的声音(上限约为130 Hz)激活了大脑某些特别的区域。

当重复的声音被认为是刺耳的、无法忍受的时候(特别是在40-80Hz之间),会引起持续的反应,刺激杏仁核、海马体和脑岛,特别是跟突出、厌恶和疼痛相关的区域,而正因为有这些区域参与声音的处理,才会使这类声音会让人感觉到难以忍受。


这也是警报声的应用原理,通过快速重复的频率来引起人们的注意。再结合声音传播不受光照、方向、角度等影响的特性,来提高警报声被人耳检测到的概率。

其他让人感到烦躁、难受的声音,如汽车喇叭声、尖叫声、婴儿哭声等等通常也是在这一频段。

聚焦效应

视觉上的三维图效果,是眼睛先呈「 散焦状态 」,视焦点前后位移产生层次感,从而看到三维平面图画的立体效果。

而人耳的听觉跟视觉相反,可以从众多的声音中「 聚焦到某一点 」上,也就是听觉的「 聚焦效应 」。
比如我们听交响乐时,大脑皮层可以抑制其它乐器的演奏声,把精力和听力集中到其中的一种乐器声音上。还有在公交地铁上,我们同样可以集中精力听广播报站的声音,而忽略车上的其他喧闹声。

这个特性也让语音交互的场景拥有更多的可能性。

触觉属于动觉交流领域,即通过身体的运动/动作来交流。


跟视觉、听觉的感知相比,「 触觉 」最大不同是它的非局部性(全身皮肤),以人体为介质,对皮肤、肌肉的感受器进行刺激,能够 敏感强烈更迅速 的被用户感知,及时传递信息。也 不易受环境影响,无论环境吵杂,或是光线不佳,对其体验效果的影响都不大。

但「 触觉 」传递的信息远少于视觉和听觉,通常作为视觉和听觉反馈的补充。对有能力缺陷的人,如听障、视障人士来说,「 触觉交互 」的应用则是一种很重要的形式。


同时也是用户体验过程中重要因素之一,会直接影响用户对产品的情感体验与交流。在工业产品设计中感受较多,如日常工作生活中常见的家居用品、鼠标、键盘、手机等的外形设计、材质触感等。

触觉的形成

人类的皮肤表面散布着触点,一般指腹最多(人类手指的触觉敏感度是前臂的10倍),其次是头部,最少的是背部和小腿。触点的大小不尽相同,分布不规则。

作用

通过对冷、热、尖锐物体的判断,让身体及时远离危险和伤害,可以对人体起到保护作用。


同时也具有表达情感,辨别情绪的功能。有说法认为「触觉」可能是用来传达人的情感的最佳途径,就像「 拥抱 」和「 安慰的文字/语言 」,体现的情感强度就很不一样。

触觉反馈-触觉学Haptics

借助Haptics技术,通过作用力、振动等「 触觉反馈 」,可以起到传递信息的作用。但想通过「 触觉体验 」来传达恰当的、有用的信息,需要先理解人类是如何诠释不同的「触觉体验」的。


比如想要通过「 振动感知 」来传递有用的信息,需要先了解怎样的振动频率、强度、节奏可以让使用者意识到其代表的是什么意思:成功、失败还是其他呢?这涉及到「 认知 」方面的内容。

通常情况下,「 触觉反馈 」是作为视觉、听觉反馈的一种补充。
如在触控屏上用虚拟键盘输入文字时,通过按键的「 振动反馈 」,让用户清晰及时地了解到自己已经成功按下了某一个按键。相关研究的结果也表明:虚拟键盘加入振动反馈后,是可以提升用户输入时的准确度。


而一些特定场景下,「 触觉反馈 」可以很好的替代视觉和听觉反馈。
比如驾驶汽车时,驾驶员需要将大部分的注意力放在道路环境上,那么通过「 触觉反馈 」,将部分操作结果传递给驾驶员,这一可以在一定程度上减轻驾驶员在视觉和听觉上的负担。

人类的动作通常分为三类:先天、模仿、训练得来的。

由于肢体的结构特点,「 先天 」和「 模仿 」的动作,通常存在一定的局限性。

头部/颈椎

颈椎前屈幅度35-45°,后伸35-45°,左右侧屈各45°,左右旋转各60-80°。

当颈部前倾时,颈椎承受的压力逐渐增大:
前倾0°时,为头部重量,约为4.5-5kg;
前倾15°时,承受压力约为12kg;
前倾30°时,承受压力约为18kg;
前倾45°时,承受压力约为22kg;
前倾60°时,承受压力约为27kg。

结合前面我们讲过的人眼转动的舒适角度和视野范围,可以为一些物品的设计提供参考。

腰部/腰椎

直立,腰伸直自然体位时,腰部可前屈90°、后伸30°、左右侧屈各20-30°、左右旋转各30°。


人体平(仰)卧位时,腰椎承受的压力最小。

腿部/膝关节

膝关节屈膝角度可达120-150°(小腿后部和股后部相贴)。人坐立时,膝关节弯曲90°,小腿和地面垂直放置对腿部最好的,屈膝小于90°时,长时间保持会影响下肢的血液循环。


伸直时一般为0°,有过伸状态5-10°。膝关节屈曲时,有轻微的内旋和外旋运动,约为10°。

手臂/肘关节


肘关节弯曲角度可达140°、过伸角度为0-10°、旋前80-90°、旋后80°-90°。

打字时,手肘弯曲接近90°(水平放置)是最放松的。


手指/手掌

1. 拇指动作幅度

掌侧可以外展约70°,指间关节屈曲约90°,掌拇关节屈曲约20-50°。
和手腕连接处的腕掌关节,能够进行较大程度的屈伸,收展,完成对掌运动。这是拇指特有的,是拇指骨外展,屈和旋内运动的总和,使拇指尖能跟其他的手指和掌面接触。

2. 其他手指动作幅度

掌指关节屈曲约60-90°,近节指间关节屈曲时约为90°,远节指间关节屈曲时约为60-90°。

3. 手指触控

在使用手机等数字界面时,用「 食指 」和「 拇指 」进行触控是比较自然和常见的行为。

根据麻省理工对人类触觉的实验,食指、拇指的宽度和触控区域有以下数据:


食指平均宽度约16~20mm、指腹触摸区域尺寸约10~14mm、指尖触摸区域尺寸约8~10mm。
拇指平均宽度约25mm、指腹触摸区域尺寸约12~16mm、指尖触摸区域尺寸约10~12mm。

触控控件的最小尺寸要大于触摸的最小尺寸。控件过小,一方面会增大准确触控的难度,另一方面手指会造成遮挡,导致用户无法明确是否已经正确触摸了相应的控件。


(手指触控这部分本来放在上面关于触觉的内容里,后面想了下,「触觉」更多的是指「反馈信息」层面的作用,所以还会归在肢体动作、范围里比较合适。)

4. 手指击键

用键盘打字时,在某些瞬间,多数手指只是放在键位上,没有击键行为,因此键盘按键的驱动力需要大于手指重量产生的力,才足以支撑手指。


ANSI 1988 年建议键盘击键的理想压力应该在0.5N-0.6N之间,一般0.25N-1.5N的压力都是可以接受的。


而对于一些特殊的设备按键,比如工业键盘类的,则需要更大的按键驱动力,因为这类产品的工作环境和活动相对复杂,需要更谨慎的操作。

5. 单手操作

单手对手机等触屏设备进行操作时,一般以四个手指和手掌为依托,用大拇指操作为主,而成年人拇指长度约为6-10cm。

数据表明,一般成年男性,单手全屏操控的屏幕尺寸最大约为4.5英寸,而成年女性,单手操控的极限约为4.0英寸。超过这个尺寸,单手进行全屏操控会有一定困难。


而目前主流的智能手机基本在5英寸以上,根据拇指关节的活动幅度,单手操作时在手掌位置不动的情况下,拇指触及的区域只是很局限的一部分:

以上就是体验设计中涉及人体结构特性的内容部分。
感谢阅读,期待交流。


部分内容参考:
https://www.nngroup.com/articles/dark-mode/
https://blog.csdn.net/qq_34217861/article/details/126102325
百科词条:用户体验、人机交互、人机工程学、视觉、听觉、触觉、人体各关节功能活动范围
其他

9
阅读原文
|
Report
|
44
Share
相关推荐
艺术品看的是什么
Recommanded by editor
文章
UX
UX
UX
UX
作品收藏夹
3D扫描仪套系Seal Lite
Homepage recommendation
内容含视频
智界R7 · ZENO x 移动悦享舱
Homepage recommendation
内容含视频
评论
in to comment
Add emoji
喜欢TA的作品吗?喜欢就快来夸夸TA吧!
推荐素材
You may like
宇宙波 x 七夕新传
Homepage recommendation
《马到成功》2026马年IP
Homepage recommendation
小猫咪插画合集
Homepage recommendation
相关收藏夹
UX
UX
UX
UX
作品收藏夹
文章
文章
文章
文章
作品收藏夹
干货
干货
干货
干货
作品收藏夹
UI
UI
UI
UI
作品收藏夹
展厅平面
展厅平面
展厅平面
展厅平面
作品收藏夹
用户分层
用户分层
用户分层
用户分层
作品收藏夹
大家都在看
Log in